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Electromagnetic properties of the linear oscillating currents flowing through toroidal knots
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Magnetic and toroid formfactors as well as the radiation intensity for a linear oscillating current flowing
through a~knotted! toroidal spiral with a fractional numbern5q/p(p,q5 integers) of turns of winding are
calculated. Some topological properties of such current lines are analyzed by studying the isotopic deforma-
tions when the ratio« of the torus radii varies from 0 to 1 and a critical value is found for it,«c5p2/(p2

1q2), at which the Calugareanu invariantK ~integer number! jumps byq units.
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We report here some results of an investigation that h
pens to involve both some aspects of knot theory, espec
those related to Calugareanu invariants@1#, and the inten-
sively explored domain of toroid moments. Originally di
covered theoretically by Zeldovich@2# ~under the name o
‘‘anapole’’!, the toroid dipole~a specific electromagneti
moment of a dipole type, different, however, from the us
electric and magnetic dipoles! led through clarification and
generalization@3# to an entire class of toroid multipole
needed in order to realize a correct and complete multip
characterization of the most general type of source in b
classical and quantum electrodynamics. Over the years
activity in the field of toroid moments increased@see Ref.@4#
and references therein#, the first experimental evidence of
nuclear spin-dependent contribution to atomic parity nonc
servation, on account of a nuclear intrinsic toroid dipole@5#,
stimulating further the investigations. Intuitively, the toro
dipole is a toroidally-wound solenoid shrinked to a point.
singles out a direction in space exactly as do the usual e
tric and magnetic dipoles.

The study of toroid moments revealed very interest
features, previously unnoted, in many areas of physics,
the analysis of toroidal structures even in classical electro
namics appears quite important in this context. In Ref.@6#
toroidal currents flowing over the surface of a torus we
considered and interesting results were found. If surface
rents provide such a good object to look for particularities
toroidal structures, why not look into linear currents flowin
through a toroidal spiral with a certain numbern of turns of
winding. While for an integern, the spiral can be countinu
ously deformed to a circle, for fractionaln the spiral is a
toroidal knot. Next we shall say something interesting ab
the knots and about an oscillating electric current go
through such a knotted wire.

The parametric equations of the toroidal spiral conside
are

x~v !5@RT1r Tcos~nv !#cos~v !, n5
q

p
, ~1!

y~v !5@RT1r Tcos~nv !#sin~v !, vP@0,2pp!,

z~v !5r Tsin~nv !, «[
r T

RT
, «P@0,1#.
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RT andr T are the large and small radii of the torus, whilep
andq are integer numbers, so thatn may be fractional. When
n is integer, the spiral is a ‘‘normal’’ one, i.e., unknotte
Otherwise~for q, p mutually prime,q.1) it is always knot-
ted.

We have studied, both analytically and numerically, d
formations of the spiral given by Eqs.~1! by varying« in the
whole admissible region«P@0,1#, i.e., going from very thin
tori to those of maximum possible thicknessr T5RT . For
such deformations of a~knotted! closed curveC given by
equations such as Eqs.~1!, parametrically («) dependent,x
5x(t),y5y(t),z5z(t), tP@0,a#, we have evaluated the re
markable Calugareanu invariant of the third order~i.e.,
x(t),y(t),z(t) have continuous derivatives upto the third o
der!

K5J1Y,

J5
1

4pEC
E

C

1

r 12
3 Ux18 x28 x12x2

y18 y28 y12y2

z18 z28 z12z2

Udt1dt2 ,

Y5
1

2pEC

ds

T
; ~2!

rW125rW12rW2 ,r 5urW12u,ds5Adx21dy21dz2,1/T is the tor-
sion of the curve (T5 the torsion radius! at the current point
of integration and primes denote derivatives. Unlike the t
terms in the right-hand side~rhs! of Eqs.~2!, both of which
may take any value,K is always an integer associated with
given curveC of the third order of continuity, and remain
constant under deformations of the same class~provided the
torsion is finite during deformations!. When during the de-
formation the curve crosses itself, the first~noninteger! term
~the double integral! varies with two units, so doesK and,
therefore, with the aid ofK one can judge on the change
the deformation class~in mathematical language, isotop
class!. The second term in the rhs of Eqs.~2! @(1/2p) inte-
gral torsion# is not sensible to self-crossing, but jumps wi
one unit if during the deformation the torsion 1/T is un-
bounded (T50) in one point.

We shall elaborate now a little bit on a certain critic
value of«. Puttingnv5u (n5q/p), the torsion of the knot
~1! can be expressed in the form
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1

T
5

1

RT

~cosu11!A1S «2
1

n211
D B

~cosu11!C1S «2
1

n211
D 2

D

, ~3!

where

A52n~n221!«3cos2u1n«2@2~2n211!1~n221!«#cosu

2n~n221!«22n~2n211!«21n~2n413n211!«3,

B52n~2n413n211!«S «1
n221

2n211
D ,

C5~2n211!«4cos3u1«3@41~n221!«#cos2u

1@3~n212!«224«31~2n413n211!«4#cosu

12~n212!«23~n212!«214~n412n211!«3

1~n423n221!«4,

D5~n211!2@~n211!«222«11#.

One sees that if cosu goes to21 faster than goes« to the
critical value

«c5
1

~n211!
5

p2

p21q2
, ~4!

then the torsion 1/T goes to`

lim
«→«c

S lim
cosu→21

1

TD 5`.

There are q critical points vk5(2k11)pp/q,k
50,1,2, . . . ,q21, on the spiral, where the torsion becom
infinite when«→«c , at wich cosu521. From Eq.~3! one
sees that the behavior of the torsion is very different in
folowing two cases:

~1! In theq pointsvk on the spiral, when cosu is fixed to
21 during the deformation~i.e., variation of«P@0,1#) the
torsion jumps from̀ to 2`,

lim
«→«c

(«,«c)

S 1

TD ~cosu521,«!5`,

lim
«→«c

(«.«c)

S 1

TD ~cosu521,«!52`.

This infinite jump is responsible for the variation of the i
variantK by q units during the deformation.

~2! If from all spirals corresponding to various«, one
singles out the one corresponding to«c given by Eq.~4! ~let
05660
e

us call it the critical spiral!, the situation is different with
respect to case~1! for «Þ«c : once« is fixed at«c , Eq. ~3!
tells us that

lim
cosu→21

S 1

TD ~u,«5«c!5 f inite.

So the critical spiral is a gentle curve, without discontinuiti
of the torsion. Calugareanu’s self-linking invariant~integer
number! has, therefore, this remarkable property: it isola
from the family of curves in the deformation process t
well-behaved critical curve, devoid of torsion discontinuiti
and with a possible half-integer value forK. The critical
spiral being a well-behaved curve, it makes sense to calcu
K for it also, although the theory cannot tell whether in th
caseK continues to be an integer. We have found numeri
support for a formula of the type

K~«5«c!5 1
2 @K~«,«c!1K~«.«c!#,

but with K(«5«c) not always an integer.
The integral torsion of the spiral Eqs.~1! can be computed

analytically and so one finds

Y5
1

2pEC

ds

T
5H s

2p
1q for «,«c ,

s

2p
for «.«c ,

~5!

s524q$@n2«21~11«!2#@n2«21~12«!2#%21/4K~k!,
~6!

with K(k) being the complete elliptic integral of argumentk
given by

k25
1

2
2

1

2

12«21n2«2

$@n2«21~11«!2#@n2«21~12«!2#%1/2
. ~7!

One remarks so the jump ofq units of the second termY in
the rhs of Calugareanu’s formula~2! at the critical point«c .
We have got then an exact formula for the first termJ, the
double integral over the spiral given by Eqs.~1!,

J52qp1
2q

p
$@n2«21~11«!2#

3@n2«21~12«!2#%(21/4)K~k!. ~8!

One sees thatJ is not sensible to the critical value«c , ex-
actly as the Calugareanu theory says. When the conc
form of Eqs. ~1! for the toroidal spiral is inserted in th
expression ofJ from its definition Eqs.~2!, Eq. ~8! provides
a nice identity that we have verified numerically to a go
accuracy. The Calugareanu invariantK for the toroidal spiral
Eqs.~1! is, therefore,

K5H 2qp1q for «,«c ,

2qp for «.«c ,
~9!
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again in agreement with the theory@1# that implies a jump of
q units for K when «c is crossed. There is only one toru
namely, the one with«5r T /RT5«c5p2/(p21q2), whose
(p,q) spiral, a ‘‘well-behaved’’ curve~that is devoid of tor-
sion discontinuities, i.e.,TÞ0), marks the change of the iso
topy class without self-crossing, but on account of tors
jumps. In this sense, there is one torus more torus than
other tori: the critical one, the one with (r T /RT)5p2/(p2

1q2).
We have computed also other Calugareanu invariants~of

second order of regularity, etc.! for the toroidal spiral. We
expectmathematicalobjects that happen to jump by intege
in differentphysicalsituations~e.g., when the torus is thin o
thick! to lead somewhere. The contrary would be curious
important as well.

Now, let us put a~generally time dependent! current of
intensityI (t) into the toroidal spiral. Our task is to calcula
the toroid and magnetic multipole moments~and the radii of
any order of their corresponding distributions!. All these
quantities realize a full description of our specific curre
distribution. We shall present here only the minimum of d
tails. We have evaluated the toroid radii of orders and mul-
tipolarity l,

Rlm
2s~ t !52

1

c~2l 11!
A4p l

l 11E d3rr l 12s11

3F Al

~2l 12s13!
YW l ,l 11,m* ~u,w!

1
Al 11

2~s11!
YW l ,l 21,m* ~u,w!G jW~rW,t !, ~10!

as well as the magnetic radii

r lm
2s~ t !5

1

ic
A 4p l

~ l 11!~2l 11!
E d3rr 2s1 lYW l lm* ~u,w! jW~rW,t !

~11!

(YW are the usual vector spherical harmonics!, by using for the
current densityjW(rW,t) the line integral

jW~rW,t !5I ~ t !E
C
ds8

drW8~s8!

ds8

d~r 2r 8!d~u2u8!d~w2w8!

r 2sinu
,

~12!

corresponding to the linear current flowing through the t
oidal spiral~1!, specified above by the contourC. For zero
order (s50), from Eqs.~10!, ~11! one gets the multipole
toroid and magnetic moments of the knotted current.
shown in Ref.@3#, r lm

2s(t) (s50,1,2, . . . ) give rise to mag-
netic type radiation~the usualMl waves! while the toroid
moments and radiiRlm

2s(t), to the usual electric typeEl
waves. Toroid sources emit electric type radiation. Sourc
unlike radiation, are described by three families of mu
poles ~the electric, magnetic, and toroid ones!, while their
radiation is only of two types, the usual electric (El) and
magnetic (Ml ) waves. In our case, although there are
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electric multipole moments,El waves are emitted on accoun
of the toroid multipoles. The ‘‘unusual’’ toroid dipole~ana-
pole! studied in Refs.@2–6# is Rlm

2s(t) for s50, l 51, m5

21,0,1, i.e., the vector~in spherical basis! R1,m521,0,1
0 (t), in

most Cartesian notationsTW (t)5(1/10c)*d3r $rW@rW• jW(rW,t)#

22rW2 jW(rW,t)%.
With Eqs. ~10!, ~11!, ~12!, going from vector spherica

harmonics to the Legendre associated functionsPl
m , one

finds

i ~21!m
c

I ~ t !

2~ l 11!

RT
2s1 l 11

A~ l 1m!!

~ l 2m!!
r lm

2s~ t !

5E
0

2pp

dv@11«212« cos~nv !#s1( l /2) ~13!

@~ l 1m!~ l 2m11!Pl
m21~cosu!Um1Pl

m11~cosu!U2m*

1mnPl
m~cosu!Vm#,

where

cosu5
« sin~nv !

A11«212« cos~nv !
,

Um5 ie2 imvF12~n21!
«

2
einv1~n11!

«

2
e2 invG ,

Vm52«e2 imvcos~nv !,r l ,2m
2s 5~21!mr l ,m

2s* ,

and a similar expression for the toroid radii of any multip
larity and orderRlm

2s(t). The formula~13! and its toroid ana-
log are exact and perhaps on the basis of such results s
thing serious about the topological implications discussed
the first part of this paper~critical dependences on«c) should
come out. Unfortunately, from now on we shall work in th
approximation of the thin torus~i.e., to order«2). We first
calculate the radii, getting results of the type

r l ,m50
2s ~ t !

5

p3/2I ~ t !RT
2s1 l 11pF21~4s214sl14s1 l 11!

«2

2 G
cGS 2

l

2DGS l 13

2 D ,

~14!

Rl ,m50
2s ~ t !5

2p3/2I ~ t !RT
2s1 l 12q«2

c~ l 11!GS 2
l

2DGS l 11

2 D , ~15!

and somewhat more complicated form>1, then succeed to
sum up the series

Mlm~2k2,t !5(
s50

`
~2k2!s

s!
Mlm

(s)~0,t !,
9-3
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r lm
2s~ t !5

2s~2l 12s11!!!

~2l 11!!!
Mlm

(s)~0,t ! ~16!

~and its toroid analog exactly of the same type! to get the
magnetic and toroid formfactors for the linear current flo
ing through the toroidal knot in the approximation of the th
torus ~to the second order in«5r T /RT)

Ml ,m50~2k2,t !

5
pp2I ~ t !RT

l 11~2l 11!!!

cA2GS 2 l

2 DGS l 13

2 D
3H 2~kRT!2 l 2(1/2)Jl 1(1/2)~kRT!

1
«2

2
@~2 l 22 l 1 1

4 !~kRT!2 l 2(1/2)Jl 1(1/2)~kRT!

12~kRT!2 l 1(1/2)Jl 1(1/2)8 ~kRT!

1~kRT!2 l 1(3/2)Jl 1(1/2)9 ~kRT!#J , ~17!

Tl ,m50~2k2,t !5
qp2«2A2I ~ t !RT

l 12~2l 11!!!

c~ l 11!GS 2
l

2DGS l 11

2 D
3~kRT!2 l 2(1/2)Jl 1(1/2)~kRT!, ~18!

and similar results form>1. Jl 5 cylindrical Bessel func-
tions, Ml ,2m5(21)mMl ,m* and analogously forTl ,2m .

Equations~17!, ~18! express all information about th
electromagnetic structure of the knotted toroidal linear c
rent~in the approximation of the thin torus, to order«2). The
appearance ofp andq factors in these formulas is significan
albeit expected. From them, one can simply get the beha
of the magnetic and toroid formfactors at small and h
frequencies.Mlm andTlm all go to constants at low frequen
cies, e.g.,

Ml ,m50~k2,t ! ;
k→0

pp3/2I ~ t !RT
l 11

cGS 2
l

2DGS l 13

2 D F21
«2

2
~ l 11!G

5Ml ,m50~0,t !, ~19!
t.

05660
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Tl ,m50~k2,t ! ;
k→0

q2«2p3/2I ~ t !RT
l 12

c~ l 11!GS 2
l

2DGS l 11

2 D 5Tl ,m50~0,t !,

~20!

while at high frequencies one gets formulas of the type

Ml ,m50~k2,t ! ;
k→`

pp3/2r T
2I ~ t !

2c

~2l 11!!!

GS 2
l

2DGS l 13

2 D

3

cosFkRT2~ l 11!
p

2 G
kl 21

, ~21!

Tl ,m50~k2,t ! ;
k→`

q2«2p3/2RTI ~ t !

c~ l 11!

~2l 11!!!

GS 2
l

2DGS l 11

2 D

3

sinS kRT2
lp

2 D
kl 11

. ~22!

For m>1, analogous but more complicated formulas we
obtained. When the currentI (t) is harmonicI (t)5Icosvt,
we have computed the radiation of such a toroidal lin
current, this time not restricting the analysis to thin tori, b
working for any«P@0,1# in the approximation of the toroi-
dal spiral seen from far away and for wavelengths larger t
the system’s dimensions. We calculated the fields to or
k3, k5v/c, and got for the radiation intensityI ~for large
n5q/p) at low frequencies

I5
p2p2I 2k4

3c S RT
21

r T
2

2 D 2

. ~23!

It is a magnetic type radiation; the electric type radiati
~marked by factors containingq) coming from toroid sources
starts appearing in the next orders in frequency.

During the past decade there has been research don
radiation and scattering by knotted structures. For a samp
of such papers, see Refs.@7# and @8#.
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