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Electromagnetic properties of the linear oscillating currents flowing through toroidal knots
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Magnetic and toroid formfactors as well as the radiation intensity for a linear oscillating current flowing
through a(knotted toroidal spiral with a fractional number=qg/p(p,q=integers) of turns of winding are
calculated. Some topological properties of such current lines are analyzed by studying the isotopic deforma-
tions when the ratia of the torus radii varies from 0 to 1 and a critical value is found fokit= p%/(p?
+9?), at which the Calugareanu invariat(integer numberjumps byq units.
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We report here some results of an investigation that hapr; andr are the large and small radii of the torus, while
pens to involve both some aspects of knot theory, especiallgndq are integer numbers, so thamay be fractional. When
those related to Calugareanu invariafity, and the inten- n is integer, the spiral is a “normal” one, i.e., unknotted.
sively explored domain of toroid moments. Originally dis- Otherwise(for g, p mutually prime,q>1) it is always knot-
covered theoretically by Zeldovicl2] (under the name of te(d,

“anapole”), the toroid dipole(a specific electromagnetic  We have studied, both analytically and numerically, de-
moment of a dipole type, different, however, from the usuakormations of the spiral given by Eqgl) by varyinge in the
electric and magnetiC d|p0|ﬁmd through clarification and whole admissible regioge [0,1], i.e., going from very thin
generalization[3] to an entire class of toroid multipoles torj to those of maximum possible thickness=Ry. For
needed in order to realize a correct and complete multipolguch deformations of gnotted closed curveC given by
characterization of the most general type of source in botlyquations such as Eqdl), parametrically £) dependentx
classical and quantum electrodynamics. Over the years, they(t) y=y(t),z=2z(t), te[0,a], we have evaluated the re-
activity in the field of toroid moments increasfske Ref[4]  markable Calugareanu invariant of the third ordee.,

and references therdirthe first experimental evidence of a y(t), y(t),z(t) have continuous derivatives upto the third or-
nuclear spin-dependent contribution to atomic parity noncongjey)

servation, on account of a nuclear intrinsic toroid digdg

stimulating further the investigations. Intuitively, the toroid K=J+Y,
dipole is a toroidally-wound solenoid shrinked to a point. It
singles out a direction in space exactly as do the usual elec- 1 L X1 X5 X{—Xp
tric and magnetic dipoles. _ "o _
The study of toroid moments revealed very interesting J_ELLF Y2 Yz didt,
features, previously unnoted, in many areas of physics, and 12 12 71—
the analysis of toroidal structures even in classical electrody-
namics appears quite important in this context. In Réf. 1 (ds
toroidal currents flowing over the surface of a torus were Y= 27 )T @

considered and interesting results were found. If surface cur-

rents provide such a good object to look for particularities off ,=r, —r,,r=|r,,|,ds= Jdx?+dy>+dZ, 1/T is the tor-
toroidal structures, why not look into linear currents flowing sion of the curve T= the torsion radiusat the current point
through a toroidal spiral with a certain numbeof turns of  of integration and primes denote derivatives. Unlike the two
winding. While for an integen, the spiral can be countinu- terms in the right-hand sidehs) of Egs.(2), both of which
ously deformed to a circle, for fractional the spiral is @ may take any value is always an integer associated with a
toroidal knot. Next we shall say something interesting abougjiven curveC of the third order of continuity, and remains
the knots and about an oscillating electric current goingconstant under deformations of the same classvided the

through such a knotted wire. _ _ _ torsion is finite during deformationsWhen during the de-
The parametric equations of the toroidal spiral consideregormation the curve crosses itself, the fifsbnintegey term
are (the double integralvaries with two units, so doe and,

therefore, with the aid oK one can judge on the change of
the deformation clasgin mathematical language, isotopy
class. The second term in the rhs of Eq®) [(1/27) inte-
gral torsion is not sensible to self-crossing, but jumps with
y(v)=[Rr+rrcognv)]sin(v), vel[0,2pm), one unit if during the deformation the torsionTlis un-
bounded T=0) in one point.
; We shall elaborate now a little bit on a certain critical
z(v)=rsin(nv), &= LI e[0,1]. value ofe. Puttingnv=u (n=q/p), the torsion of the knot
T (1) can be expressed in the form

X(v)=[Ry+rycognv)]cogv), nzg, 1)
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(cosu+1)A+| e— >
1 1 n°+1
T Ry 1 \Z ()
(cosu+1)C+| e— 5 )D
n“+1

where

A=-n(n?—1)e3cogu+ne?[2(2n?+1)+(n?—1)e]cosu
—n(n>-1)e—2n(2n?+1)e’+n(2n*+3n%+1)e3,

nz—l)
e+ ,

B=-—n(2n*+3n°+1)¢
2n%+1

C=(—n?+1)e*cosu+ e3[4+ (n>~1)e]cosu
+[3(n?+2)e?— 43+ (—n*+3n?+1)e*]cosu
+2(n%+2)e—3(n?+2)e?+4(n*+2n%+1)e°

+(n*-3n°—1)&%,
D=(n’+1)(n’+1)e’—2e+1].

One sees that if casgoes to— 1 faster than goes to the
critical value

1 p?

e+ preg?

(4)

then the torsion I7 goes tow

. 1
lim lim T =00,
e—eg cosu——1

There are q critical points v, =(2k+1)mp/qg,k
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us call it the critical spiral the situation is different with

respect to cas€l) for e #&.: oncee is fixed ate., Eq.(3)
tells us that

(u,e=¢g.)=finite.

lim (1
i -
cosu——1 T
So the critical spiral is a gentle curve, without discontinuities
of the torsion. Calugareanu’s self-linking invariaimiteger
numbej has, therefore, this remarkable property: it isolates
from the family of curves in the deformation process the
well-behaved critical curve, devoid of torsion discontinuities
and with a possible half-integer value f&. The critical
spiral being a well-behaved curve, it makes sense to calculate
K for it also, although the theory cannot tell whether in this
caseK continues to be an integer. We have found numerical
support for a formula of the type

K(e=gc)= %[K(8<8c)+ K(e>eg)],

but with K(e =¢;) not always an integer.
The integral torsion of the spiral Eq4) can be computed
analytically and so one finds

g
— for e<e.,
1 (ds 27 e
")t o ©®
— for e>eg.,
2T

o=—4g{[n’e’+(1+&)*][n%*+(1-¢)?]} "K(k),
©)

with K (k) being the complete elliptic integral of argument
given by

1—e24n2g?

{[n%e?+(1+e)?][n%e?+ (1—e)? ]}

|<2—1 ! 7
272 @

=0,1,2 ...,9—1, on the spiral, where the torsion becomes

infinite whene—e¢., at wich couu=—1. From Eq.(3) one

One remarks so the jump gfunits of the second teri in

sees that the behavior of the torsion is very different in théhe rhs of Calugareanu’s formu(@) at the critical points .

folowing two cases:

(1) In the g pointsv on the spiral, when casis fixed to
—1 during the deformatiofi.e., variation ofe €[0,1]) the
torsion jumps frome to — o,

li !
im T (cosu=—1,g)=c0,

e—ec
(e<eg)

li ! = =
im T (cosu=—1,e)=—o0,

e—e,
(e>e()

We have got then an exact formula for the first teinthe
double integral over the spiral given by Ed$),

J=—qp+ 2?q{[nzeer(lﬂa)z]
X[n2e2+(1—¢&)?} YK (k). (8)

One sees thal is not sensible to the critical value,, ex-
actly as the Calugareanu theory says. When the concrete
form of Egs. (1) for the toroidal spiral is inserted in the
expression ofl from its definition Eqs(2), Eq. (8) provides

a nice identity that we have verified numerically to a good
accuracy. The Calugareanu invari&for the toroidal spiral

This infinite jump is responsible for the variation of the in- EAS-(1) is, therefore,

variantK by g units during the deformation.
(2) If from all spirals corresponding to various, one
singles out the one correspondingsogiven by Eq.(4) (let

—gptq for e<ec,

K= 9

—-gp for e>eg,
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again in agreement with the thedrd/ that implies a jump of  electric multipole moments; | waves are emitted on account
g units for K when e, is crossed. There is only one torus, of the toroid multipoles. The “unusual” toroid dipol@na-
namely, the one withe=r/Rr=e.=p?(p?+q?), whose pole studied in Refs[2-6] is RZ3(t) for s=0, =1, m=
(p.q) spiral, a “well-behaved” curvdthat is devoid of tor- —1,0,1, i.e., the vectofin spherical bas)SRg,m:—l,O,l(t)' in
sion discontinuities, i.eT# 0), marks the change of the iso- ,0st Cartesian notation§'(t)=(1/1(b)fd3r{F[F~ T(F,t)]
topy class without self-crossing, but on account of torsion_Zsz»(F 0}

jumps. In this sense, there is one torus more torus than the | . . .

Jothe?r tori: the critical one, the one withr {/Ry) = p?/(p? With Egs. (10), (11), (12), going from vector spherical

+?) ' ' T harmonics to the Legendre associated functiéhs, one
We have computed also other Calugareanu invarigfts finds

second order of regularity, ejcfor the toroidal spiral. We ¢ 20+1) [Txm)!

expectmathematicabbjects that happen to jump by integers i(—1)™— 025(1)
in differentphysicalsituations(e.g., when the torus is thin or I(t) R2s++1 N (I=m)! 7™
thick) to lead somewhere. The contrary would be curious but ,
important as well. _ f e 2 s+(112)
Now, let us put a(generally time dependenturrent of 0 do[1+s%+28 codnv)] (13

intensity| (t) into the toroidal spiral. Our task is to calculate
the toroid and magnetic multipole momeiténd the radii of [+m)y(l—m+ 1)P,m‘1(cos¢9)Um+ P 1(cose)U’im
any order of their corresponding distributiongll these
quantities realize a full description of our specific current +mnP"(cos6)V,],
distribution. We shall present here only the minimum of de-
tails. We have evaluated the toroid radii of oréeand mul- ~ where
tipolarity I,
e sin(nv)

cosf= ,
R|25(t)=— 1 B /47T|fd3rr|+25+1 J1+&2+2e cogno)
m c(2l+1) VI+1

N

@253 e 0:9)

J+1

T st -0

. e . & .
—ia—imu _ _ _ alnv _ a—inu
» Un,=ie 1—(n 1)2e +(n+1)2e ,

o Vp=2ee M™cognu),p?® = (—1)"pfk
j(r.b), (10)

and a similar expression for the toroid radii of any multipo-

larity and ordelRlzni(t). The formula(13) and its toroid ana-

log are exact and perhaps on the basis of such results some-

thing serious about the topological implications discussed in

f d*rr 2tV (6,01 (1 1) the first part of this papefcritical dependences an) should

come out. Unfortunately, from now on we shall work in the

1y approximation of the thin torué.e., to ordere?). We first

calculate the radii, getting results of the type

as well as the magnetic radii

2s _1 47l
PimV= eV ar D2+ 1)

(Y are the usual vector spherical harmohitsy using for the
current densityj (r,t) the line integral P —o(t)

dr'(s') 8(r—r")8(6—6')8(e—¢') 2321 (R 1p

2
&
2+(4sz+4s|+4s+|+1)ﬂ

f(F,t)=|(t)des’

ds’ r?sing
(12 I I+3 '
CF( )Mz
corresponding to the linear current flowing through the tor- (14)
oidal spiral(1), specified above by the conto@: For zero
order (5=0), from Egs.(10), (11) one gets the multipole 2732 (1) R2SH! 252
toroid and magnetic moments of the knotted current. As RS _,(t)= ! , (15
shown in Ref.[3], p23(t) (s=0,1,2...) give rise to mag- ' c(l+1)T —|—>F |+_1
netic type radiationthe usualM| wave$ while the toroid 2 2

moments and radiR,zrﬁ(t), to the usual electric typé&l .
waves. Toroid sources emit electric type radiation. Sourcet"d somewhat more complicated foe=1, then succeed to
unlike radiation, are described by three families of multi-SUm Up the series

poles (the electric, magnetic, and toroid onewhile their o s
radiation is only of two types, the usual electriElj and M ( — k2 t)ZE (—Kk%) M (0)
magnetic M) waves. In our case, although there are no m o 8! i
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25(21 + 25+ 1)!!
21+ 1)

2s

pim(t)= (16)

M0}

(and its toroid analog exactly of the same type get the

magnetic and toroid formfactors for the linear current flow-
ing through the toroidal knot in the approximation of the thin

torus(to the second order in=r+/Ry)

M} m=o( —k?t)
pw2|(t)R'“(2|+1)H
c\/—l“< ) IZS

X1 2(kRyp) ™' A3, 15 (kRy)

2
&€
+ ?[(—|2—|+ $)(KRp) ™23, (45(kRy)

+2(kRy) 7' H23[ o (KRy)

+(kRy) ™! +<3’2>J.”+(1,2)<kRT>]] : 17)
, . amfe?2I(RY 21+ 1)1
Tl,m=0(_k !t)_ l - I - |+1
S Tl
X (KRp) ™23, 1(kRy),  (18)

and similar results fom=1. J, = cylindrical Bessel func-
tions,M, _,=(—1)"Mf, and analogously fof, _
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q2&27% (HR 2

Tim=o(K?, 1) ~

o N [1+1
C(|+1)F< — E)F(T

=T, m=0(01),

(20

while at high frequencies one gets formulas of the type

pr¥&2I(t)  (20+1)N
2 ~
Mim-olk%1) ~ 3¢ NERAWIEE
22
v
cos{kRT—(IJrl)E}
X = , (21
qe2mRI(t)  (21+ 1)
2 _~
Tim-olk%0) ~ ——51+7) NN
22
) | 7
sin kRT—?

For m=1, analogous but more complicated formulas were
obtained. When the curremft) is harmonicl (t) =1 coswt,

we have computed the radiation of such a toroidal linear
current, this time not restricting the analysis to thin tori, but
working for anye €[0,1] in the approximation of the toroi-
dal spiral seen from far away and for wavelengths larger than

Equations(17), (18) express all information about the the system’s dimensions. We calculated the fields to order
electromagnetic structure of the knotted toroidal linear curk®, k=w/c, and got for the radiation intensity (for large
rent(in the approximation of the thin torus, to orde?). The  n=q/p) at low frequencies
appearance gf andq factors in these formulas is significant,

albeit expected. From them, one can simply get the behavior 0221 2Kk r2\2
of the magnetic and toroid formfactors at small and high =—(R$+ _T> . (23
frequenciesM,,, andT,,, all go to constants at low frequen- 3¢ 2
cies, e.g.,
2o 1 ) It is a magnetic type radiation; the electric type radiation
M (2.) ~ pm(t)Ry N (marked by factors containing) coming from toroid sources
I,m=0{K", 0 I [+3 2 starts appearing in the next orders in frequency.
CF( - E)F(T During the past decade there has been research done on
radiation and scattering by knotted structures. For a sampling
=M m=0(0}t), (19 of such papers, see Refd] and[8].
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